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ABSTRACT

With high morbidity and mortality, lung cancer has become the leading 
cause of cancer-related death worldwide, of which 85% are non-small-cell lung 
cancer (NSCLC). Most patients present with advanced disease at diagnosis and 
5-year survival rate is no more than 30% due to lack of appropriate screening
and early detection. In spite of tissue samples, ctDNA (circulating  tumor
DNA) is also widely used for molecular profiling to guide the treatment of
NSCLC for lots of advantages. This review mainly focuses on the clinical and
investigational applications of ctDNA detection in facilitating the personalized
therapy of NSCLC.

Initially reported by Mandel et al. in 19481, cfDNA (cell-free DNA) refers 
to the acellular, free DNA fragments in circulation (plasma or serum) derived 
from somatic cells through mechanisms like necrosis, apoptosis and exosome 
secretion. ctDNA is cfDNA generated by tumor cells, which carries cancer-
associated genetic alterations2,3. In 1977, Leon et al. first reported that the 
level of plasma ctDNA of patients with cancer was significantly higher than 
that of normal persons4, which was also confirmed in NSCLC5,6. In NSCLC 
patients, techniques for targetable genetic ctDNA detection have improved 
from traditional ARMS, HPLC, BEAMing, FISH to new generations of NGS (next 
generation sequencing), ddPCR and CAPP-Seq etc. Compared with traditional 
detection methods, NGS shows extraordinary advantages like massively 
parallel sequencing, lower-inputs, cost-effectivity, ultra-sensitivity and hyper 
accuracy7,8. The main applications of ctDNA detection in the personalized 
treatment of NSCLC patients will be discussed in this review. 

Clinical application of ctDNA detection in NSCLC 

Identification of targetable genetic alterations
Targetable genetic alterations in NSCLC patients for which 

multiplex sequencing is recommended by NCCN (National 
Comprehensive Cancer Network) guidelines include: EGFR 
mutations, ALK fusions, MET exon 14 skipping mutations, BRAF 
mutations, HER2 (ERBB2) amplification and indels, ROS1 and RET 
fusions9. Multiple studies have confirmed that it was reliable to detect 
targetable EGFR mutations, either single hot-spot gene detection 
(Table 1)10-18 or multiplex-parallel targetable genetic sequencing 
(Table 2)19-24 through various platforms with high sensitivity and 
specificity. Remarkably, NGS-based detection and ddPCR show 
outstandingly high diagnostic value for the classic Del19, L858R, 
T790M mutation(Table1), indicating that ctDNA sequencing, 
especially the ultra-sensitive NGS-based sequencing could guide 
TKIs treatment directly. Moreover, ctDNA detection, especially 
the massively parallel NGS, plays a critical role in disclosing novel 
targetable mutations. For instance, in the study by Cui et al., 2 rare 
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fusion types including FAM179A-ALK  and COL25A1-ALK 
were identified in addition to the most common EML4-ALK 
fusion20. The previous study of our team also confirmed that 
apart from common targeted mutations, other less common 
genomic alterations of which the targeted agents are still 
under clinical research (such as mTOR inhibitors, PARP 
inhibitors, and CDK4/6 inhibitors) are found as well by 
hybrid capture-based 508-gene panel NGS assay (Oseq-NT)25. 
More importantly, ctDNA analysis could reveal the genetic 
alterations which are missed by the tissue detection24,26.

Response assessment by dynamic monitoring of 
ctDNA

The non-invasiveness, repeatability of liquid biopsy as 
well as short half-life (16 minutes~2.5 hours)27 of ctDNA all 
together enable the utility of ctDNA detection as one way 
to dynamically monitor response to TKIs. It was suggested 
that the dropping degree to which the EGFR mutation level 
in urine and plasma ctDNA was indicative of response to 
TKIs16,28,29. By dynamically monitoring the level of EGFR 
mutations in plasma ctDNA with PCR test and ultra-deep 

NGS, an average percent decrease of 63.5% were observed 
after 14 days of treatment, and in all but two patients, 
mutation clearing time was no more than 60 days30. Kim 
et al reported that 10 cases of EGFR-activating mutation in 
ctDNA detected by PNA-mediated PCR clamping were found 
disappear in plasma after TKIs treatment for 2 months12. In 
Imamura F et al.’s study, complete disappearance of major 
EGFR ctDNA was observed in57.1% patients after 15 days 
of TKIs treatment31. 

In NSCLC, ctDNA level could also be used as a prognostic 
biomarker. NSCLC patients with higher circulating EGFR 
copy number levels had a lower OS and PFS, and those who 
with high levels of EGFR-activating mutations in plasma 
samples had longer OS and PFS upon TKIs treatment32,33,34. 
In addition, meta-analysis by Fan G et al. also verified that 
patients with detectable KRAS mutations in plasma ctDNA 
have a significantly shorter OS and/or PFS compared to 
patients with wild-type KRAS34. 

Disclosing novel mechanisms of TKIs resistance 
Mechanisms of resistance after failure from prior TKIs 

Method Sample
Positivity Sensitivity Specificity Concordance

PPVa Ref
(%) (%) (%) (%)

ARMSb plasma 10.5 65.7 99.8 94.3 — [10]
ME-PCRc plasma 49.3 100 90 94.4 — [11]

PNA-PCRd plasma 15 17.1 100 27.5 — [12]
DHPLCe plasma 34.3 81.8 89.5 74 — [13]
ARMS plasma 16.7 75 97.1 92.9 — [14]

cobas®EGFR
test plasma 11.7 60.7 96.4 91.3 — [15]

NGSf plasma —

87 96

— — [16]

(del19) (del19)
100 100

(L858R) (L858R)
93 94

(T790M) (T790M)
Deep

plasma —

50.9 98

— — [17]
Sequen- (del19) (del19)

cing 51.9 94.1
(L858R) (L858R)

ddPCRf — —

82

— —

100

[18]

(del19) (del19)
74 100

(L858R) (L858R)
77 79

(T790M) (T790M)

Table1. EGFR mutations identified by different ctDNA sequencing platforms in NSCLC patients.

Note: Abbreviations
PPVa: positive predicitve value
ARMSb: Amplifcation Refractory Mutation System
ME-PCRc: mutant-enriched polymerase chain reaction (PCR)
PNA-PCRd: peptide nucleic acid polymerase chain reaction 
DHPLCe: denaturing high-performance liquid chromatography 
ddPCRf: droplet digital PCR
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treatment in NSCLC patients are highly heterogeneous. 
Multiple studies have confirmed that ctDNA profiling is re-
liable in disclosing novel mechanisms of TKIs resistance. 
Through serial ctDNA monitoring, EGFR C797S was sug-
gested to be one of the acquired resistant mechanisms of 
Osimertinib35,36. Recently, novel C797G point mutation37 

and EGFR-exon19del allele amplification38 were found to 
mediate resistance to Osimertinib through ctDNA test-
ing in NSCLC patients. Several secondary point mutations 
in ALK were found in ALK positive NSCLC patients by com-
prehensive ctDNA assays at the presence of progression 
after treatment of crizotinib21. Although ctDNA detection 
is widely used in detecting resistant mutations in NSCLC 
patients, it was noteworthy that further tissue biopsy sam-
ples could discover mutations with low frequency and oth-
er rare resistance mechanisms like SCLC transformation38. 

Significance of ctDNA assay in NSCLC screening and 
early diagnosis 

It was suggested that ctDNA detection by NGS could 
be used for screening and early diagnosis NSCLC22. A DNA 
cutoff level of over 20 mg/ml could distinguish between 
lung cancer patients and healthy persons39. The ultra-
sensitive CAPP-Seq demonstrated a sensitivity of 50% in 
ctDNA detection for patients with stage I NSCLC40. Positive 
detection rates of plasma ctDNA detected by Sec-Seq (an 
NGS-based systematic error correction sequencing) in 
patients with stage I lung cancer was 85%41, indicating 
that ctDNA detection is able to distinguish pulmonary 
malignancies and other benign diseases. The clinical utility 

of ctDNA detection for the screening and early diagnosis 
of NSCLC is limited due to the sensitivity of current 
sequencing technologies42. ctDNA assay may work better 
in early diagnosis of NSCLC when combined with other 
radiological strategies such as low-dose CT43.

Tracking recurrence of NSCLC
Studies show that levels of ctDNA were highly correlated 

with tumor volume and can be used in distinguishing 
between residual disease and treatment-related imaging 
changes44. What’s more, relapse identified by ctDNA 
detection was 70 days prior to CT scanning45. By profiling the 
ctDNA in postoperative plasma of the first 100 participants 
in TRACERx study through a tumor-specific phylogenetic 
approach, independent predictors of ctDNA release was 
identified and subclonal nature of lung cancer relapse and 
metastasis were tracked as well46. Another prospective 
study (NCT02965391) concentrating on the dynamic 
change and potential role of multiple ctDNA detection 
by cSMART in monitoring post-operative recurrence of 
patients with early stage NSCLC shows that 76.9% (10/13) 
underwent drastic drop of ctDNA level, and ctDNA level 
of all patients decreased to 0% 72 hours after surgery. No 
recurrence was identified by ctDNA detection 1 month 
post operation47. DARWIN II (NCT02314481) is a multi-
arm, non-randomized phase II study examining the effect 
of intratumor heterogeneity on the efficacy of anti-PDL1 
immunotherapy in which relationship between intratumor 
heterogeneity and ctDNA will be examined, thus new ways 
of cancer screening and monitoring will promisingly be 

Method Targetable genetic 
alteration

Sensitivity
 (%)

Positivity 
 (%)

Specificity
 (%)

Accuracy 
(%)

Concordance 
(%) Ref

Capture based NGS ALK fusion/rearrangement 79. 2 — 100 — — [19]
Capture based NGS ALK fusion 54.2 — 100 71. 8 — [20]
Guardant360 based NGS ALK SNVsa/fusions — 6 — — — [21]

Multiple sequencing 
techniques

EGFR,
KRAS,
TP53,
BRAF,

PIK3CA, 
ERBB2

69.2 — 93.3 94.7 
(PPVb) 78.1 [22]

NGS
IonTorrent
PGM platform

EGFR,
KRAS,
BRAF,

ERBB2, 
PI3KCA

58 — 87 — — [23]

Biascorrected 
targeted NGS

EGFR,
ALK, 

ROS1,
RET 

HER2ins,
METamp

77 — 100 — — [24]

Table 2. Targetable ctDNA alterations detected by multiplex NGS assay in NSCLCpatients.

Note: Abbreviations 
SNVa: single nucleotide variant 
PPVb: positive predictive value
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explored48.But another emerging controversy is whether 
prompt actions should be taken as response to dynamic 
changes of ctDNA mutational status and how to modify 
treatment strategies accordingly. Results of the ongoing 
studies are worthy of expectation.

Conclusions and Perspective
In spite of lots of challenges (Table 3), we have 

witnessed the rapid improvements of ctDNA analysis in 
cancer diagnosis and treatment assessment in recent years. 
As the concentration of ctDNA is extremely low(<1%), 
increasing the test sensitivity and specificity is a key point 
in promoting utility of ctDNA detection in diagnosis and 
treatment of cancer. What’s more, consensus in standard 
for technique selection and statistic analysis should also be 
made to avoid discrepancies amongst different detecting 
processes. ctDNA detection is now playing a critical role 
in personalized treatment of NSCLC patients and has wide 
application prospect.
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