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ABSTRACT

Research on the aryl hydrocarbon receptor (AhR) has largely focused on 
its activation by various environmental toxins. Consequently, only limited 
inferences have been made regarding its constitutive activity in the absence of 
an exogenous ligands. Evidence has shown that AhR is constitutively active in 
advanced prostate cancer cell lines which model castration resistant prostate 
cancer (CRPC). CRPC cells can thrive in an androgen depleted environment. 
However, AR signaling still plays a major role. Although several mechanisms 
have been suggested for the sustained AR signaling, much is still unknown. 
Recent studies suggest that crosstalk between constitutive AhR and Src kinase 
may sustained AR signaling in CRPC. AhR forms a protein complex with Src 
and plays a role in regulating Src activity. Several groups have reported that 
tyrosine phosphorylation of AR protein by Src leads to AR activation, thereby 
promoting the development of CRPC. This review evaluates reports that 
implicate constitutive AhR as a key regulator of AR signaling in CRPC by utilizing 
Src as a signaling intermediate.

Introduction
Most men who die of prostate cancer present with castration 

resistant prostate cancer (CRPC)1. Androgens and androgen 
receptor (AR) signaling play a predominant role in male sexual 
development, growth of the prostate gland and progression of 
prostate cancer to CRPC2. In CRPC, AR signaling has been shown 
to be sustained by a variety of mechanisms including increased 
androgen uptake by prostate cancer cells, increased AR expression, 
AR gene mutation and activation by other transcription factors3-4. 
The aryl hydrocarbon receptor is a transcription factor that has been 
extensively studied for its role in mediating the toxic effects of a wide 
range of environmental toxins. However, recent evidence has shown 
that AhR possess intrinsic functions independent of activation by 
an exogenous ligand. Constitutively active AhR has been shown to 
interact with hormone receptors and may play a role in progression 
of hormone-related cancers. Particularly, constitutively active AhR 
interacts with AR and act as a functional transcription unit5, a 
mechanism that may lead to enhanced AR signaling in CRPC. 

Constitutive AhR Signaling
Although AhR has been extensively researched for its role 

as a xenobiotic receptor; RNA interference, overexpression, and 
inhibition studies suggest a role for AhR in multiple tumor types 
beyond activation by environmental contaminants6. As an inactive 
complex, AhR is found in the cytosol where it interacts with tyrosine 
kinase c-Src as well as two molecules of HSP90, co-chaperone p23 
and immunophilin-like AhR interacting protein (AIP/XAP2)7,8. In its 
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active form, AhR disassociates from its chaperone proteins 
and dimerizes with the aryl hydrocarbon receptor nuclear 
translocator (ARNT). The heterodimer activates gene 
expression through interactions with related xenobiotic 
responsive elements (XREs) located on Ah- responsive gene 
promoters9. Studies concerned with the intrinsic functions 
of AhR have found that overexpression of the receptor may 
promote carcinogenesis in the absence of a exogenous 
ligand. AhR protein and mRNA expression is associated with 
phases of rapid proliferation and differentiation in certain 
tissues. Conversely, AhR-defective cell lines demonstrate 
a reduced proliferation rate10. Ectopic over expression of 
AhR in immortalized normal mammary epithelial cells 
induced a malignant phenotype with increased growth and 
acquired invasive capabilities11. A separate study using a 
constitutively active AhR construct lacking a ligand binding 
domain revealed that AhR acts as a transcriptional co-
regulator for the unliganded AR. These studies show that 
the endogenous AR along with the constitutively active 
AhR were recruited to androgen-responsive elements to 
initiate signaling in an androgen depleted environment5.

Ligand Activated AhR Signaling
The aryl hydrocarbon locus includes AhR, ARNT, and 

the AhR repressor (AHRR), which are critical for regulation 
of AhR signaling9 in both constitutive and ligand activated 
signaling. AhR ligands such as 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD), components of cigarette smoke such 
as benzo(a)pyrene (BaP), and a wide range of polycyclic 
aromatic hydrocarbons (PAH) exert their biological 
influences by binding directly to the AhR. Following ligand 
activation, AhR’s primary role is identified as the control of 
xenobiotic metabolism through cytochrome P450s, some 
of which are transcriptional targets of AhR13. Activation of 
AhR by PAHs has been reported to antagonize AR signaling. 
For example, TCDD has been shown to alter sex steroid 
hormone secretions. TCDD was also shown to block the 
androgen dependent proliferation of prostate cancer 
cells14. Simultaneous activation of AhR and AR with TCDD 
and an androgen derivative, respectively, decreased AR 
protein levels15. Thus, activation of AhR by a ligand results 
in decreased protein expression of both AhR and AR. This 
action may explain the anti- androgenic actions of a number 

of PAHs, is distinctive from the effects seen with constitutive 
AhR signaling that accompanies overexpression of the AhR 
protein and may be the result of enhanced activity of AhR 
chaperone protein, Src kinase.

The mammalian AhR protein contains four major 
structural motifs important in AhR’s interactions with 
other proteins and transcription factors. The N-terminal 
basic-helix-loop-helix is the site of DNA binding domain 
and also participates in dimerization and HSP90 binding. 
The transactivation domain spans from amino acid 490 
to 805 and includes a central glutamine rich region. 
The two Per-Arnt-Sim (PAS) domains are named after 
their homology with the clock protein period (Per), the 
xenobiotic and oxygen sensing ARNT, and the neuronal cell 
lineage regulator single-minded (Sim) (Figure 1)16. The 
PAS domains facilitate interactions with other PAS domain 
proteins, such as the AhR binding partner, ARNT. PAS-A is 
primarily responsible for protein-protein interaction and 
PAS-B also encompasses the ligand binding17. cSrc may 
interact directly with the AhR transactivation and PAS 
domains7. Western blot and FRET analysis confirm time-
dependent phosphorylation of Src following activation 
of AhR which was blocked in the presence of a specific 
AhR antagonist18. Furthermore, coimmunopercipitation 
experiments revealed that AhR regulates Src activity by 
phosphorylating Src (Tyr 416) and dephosphorylating Src 
(Tyr527)19.

Src activity in prostate cancer
The increased expression of Src and other Src family 

kinases (SFK) in a number of prostate cancer cell lines 
has suggested a role for Src in prostate cancer initiation 
and progression20. There are also many reports that SFKs 
are abnormally activated in prostate cancer cells. SFKs 
are activated in response to numerous stimuli including 
neuroendocrine ligands, reactive oxygen species, cytokines 
and growth factors. These molecules have proven roles in 
cancer progression, including cell proliferation, adhesion, 
migration, and invasion21.

Src and AhR coexist in a protein complex that also 
contains HSP90, AhR-interacting protein, and p23 that aides 
to maintain an inactive AhR complex8. TCDD activation of 

Figure 1: The schematic structure of AhR functional domains. The AhR protein contains several domains critical for transcriptional 
activity. The basic-helix-loop-helix (bHLH) motif, two Per- Arnt-Sim (PAS) domains (PAS-A and PAS-B) and a glutamine rich transactivation 
domain (TAD).
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AhR results in time- and dose-dependent phosphorylation of 
Src (Tyr416). Reported Src-mediated crosstalk between AhR 
and EGFR signaling pathways demonstrated an important 
link between AhR canonical function and TCDD-mediated 
tumor promotion19,22,23. Through direct physical interaction 
with AR, Src is able to phosphorylate AR and thereby induce 
ligand-independent activation of AR, a key mechanisms of 
CRPC24. Conversely, AR overexpression also plays a role in 
the oncogenic potential of wild-type Src. This suggests that 
crosstalk and activation of AR and Src is reciprocal25.

Tyrosine Phosphorylation of AR

AR contains at least sixteen phosphorylated residues. 
Several of the residues are phosphorylated after treatment 
of cells with androgen, antiandrogen, or reagents which 
activate other signaling pathways and alter transcriptional 
activity, cellular localization, and stability of AR26. As a 
phosphoprotein, AR has several serine/ threonine and 
tyrosine residues that are phosphorylated. Most of the 
phosphorylated residues are located in N-terminal domain 
that regulates AR cellular localization, stability and its 
transcriptional activity.

Recently, several groups have reported that tyrosine 
phosphorylation of AR protein by non- receptor tyrosine 
kinases Src may have a role in AR activation in the low 
androgen environment, thereby promoting the development 
of CRPC. Src-mediated phosphorylation of AR at Y534 resulted 
in the activation of AR followed by nuclear translocation and 
DNA binding in the absence of androgens (Figure 2)26-28.

AR signaling and regulation prostate cancer
AR is a member of the steroid hormone receptor family 

and shares a similar domain organization with other 
members of the nuclear receptor (NR) which is primarily 
responsible for mediating the physiological effects of 
androgens by binding to AREs29. In the presence of low 
levels of androgen, AR is normally localized to the cytosol 
in a complex with molecular chaperones, Hsp40, 70 and 90 
in an inactive form. Upon androgen binding, the androgen 
induces conformational changes in the protein, forms a 
homodimer, and translocates to the nucleus30. The nuclear 
translocation results in binding of AR as a transcription 
factor to ARE’s in the regulatory region of target genes. 
AR signaling plays a critical role in prostate cancer cell 
proliferation, survival, and differentiation31.

Several studies based on molecular cloning of AR cDNA, 
suggest that its transcriptional activity is critical for all 
stages of prostate cancer development and progression. 
Several neutral next- generation sequencing platforms 
have been used to pursue genomic characterization of 
prostate cancer at various stages. Results have consistently 
confirmed a critical role for AR activity in prostate cancer 
progression32.

While AR signaling is known to modulate the expression 
of genes associated with cell cycle regulation, survival 
and growth, its specific functions are not fully defined in 
prostate cancer33. Whole genome sequencing of 11 early 
onset prostate cancers suggested that androgens, through 
AR, contribute in shaping somatic alterations34. These 
results are further supported by studies demonstrating that 
AR is known to stimulate the expression of TMPRSS2: ERG 
which is a common gene fusion associated with prostate 
cancer initiation via androgen-driven overexpression of 
the gene fusion products35. It is clear that AR signaling 

Figure 2: Schematic structure of Src and AhR interaction and phosphorylation. The AR protein contain an N-terminal domain (NTD); 
DNA-binding domain (DBD); and ligand-binding domain (LBD). AF-1, AF-5, AF-2 are three known transactivation domains in the AR. 
The Src molecule AR interacts with the AF-5 domain of AR through the SH3 (helix recognition) domain of cSrc. This interaction occurs 
following phosphorylation of Tyr416 and dephosphorylating of Tyr527 which is located in a C-terminal regulatory domain.
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plays a critical role in the development and progression 
of prostate cancer and serves as a central component of 
progression to CRPC.

Crosstalk between AhR and AR signaling

AhR signaling influences androgen signaling directly 
at the level of the protein and indirectly through actions 
on the endocrine system. AhR plays a significant role 
in sustained AR signaling and growth. However, the 
mechanism for this role is not clearly understood. One 
possible mechanism is direct interaction between AhR 
with AR. AhR has been reported to directly interact with a 
number of nuclear proteins36-38. Direct heterodimerization 
of AhR and AR has been shown to occur in cells and may 
partially explain the crosstalk between the two receptors5. 
Additionally, interaction can happen via coactivators. AhR 
and AR share a number of coactivator proteins such as 
SRC1 and p30039. Another possible mechanism AhR may 
utilize for AR activation is phosphorylation of AR by Src 
kinase5,40. Src was shown to mediate crosstalk between 
AhR and epidermal growth factor receptor in colon cancer 
cells19. Other studies have shown that Src kinase can 
promote AR transactivation in C4-2 cells prostate cancer 
cells. Consequently, inhibition of Src kinase function with 
a specific inhibitor resulted in decreased AR activation41. 
Coimmunoprecipitation experiments revealed that AhR 
forms a protein complex with Src and regulates Src activity 
by phosphorylating Src (Tyr416) and dephosphorylating 

Src (Tyr527)19,42. Immunoprecipitation assays also 
revealed the association of AR with Src, suggesting complex 
formation among them43.

Conclusion
The precise molecular mechanism utilized by 

constitutive AhR signaling to activate AR signaling needs to 
be investigated further and could include induced activation 
via protein phosphorylation, direct heterodimerization 
and interacting via coactivators. Extensive in vitro and in 
vivo studies have established a role for AhR in prostate and 
prostate cancer development. The development of AhR-null 
mice has revealed that the function of this receptor is not 
limited to mediating the effects of PAHs and other ligands44. 
AhR knockout mice exhibit decreased fertility, decreased 
liver size, and structural and functional deficits in several 
tissues45. These include reproductive tract problems such 
as decreased levels of mature follicles and formation of uric 
acid stones in the urinary bladder46.

AhR and ARNT are expressed through all stages of male 
urogenital system development and in the prostate gland. 
AhR and ARNT genes are expressed in fetal mouse and rat 
urogenital sinus (UGS) and in normal, hyperplastic, and 
cancerous adult human prostate tissue47. Ligand activation 
of AhR by TCDD is adequate to disrupt key stages of ductal 
morphogenesis. Significantly smaller prostate lobes were 
observed in rats and mice exposed to TCDD during fetal- 
pubertal development. Indicating that TCDD-induced AhR 

Figure 3: The proposed pathway for constitutive AhR signaling and crosstalk with Src. (1) Binding of various exogenous and endogenous 
ligands to the cytoplasmic AhR or deletion of the ligand binding domain stimulates translocation to the nucleus where the AhR/ARNT 
heterodimer forms. The AhR–ARNT dimer binds to a cognate xenobiotic response element (XRE) to induce transcription of genes 
important in a wide range of biological processes. (2). AhR forms a protein complex with Src and regulates Src activity by phosphorylating 
Src at Tyr416 and dephosphorylating Src at Tyr527. (3) Phosphorylation of AR protein by non-receptor tyrosine kinases Src.
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activation delays prostate growth48. TCDD exposure also 
led to a decreased number of prostate ducts in monkeys49. 
AhR may serve as a key regulator of AR signaling in 
CRPC by utilizing Src as a signaling intermediate. Recent 
studies have revealed that simultaneous inhibition of 
AhR and Src is sufficient to abolish AR signaling in CRPC 
cells50. Activated Src is a common signaling intermediate 
in a number of pathways including AR signaling pathway 
and has increased activity in CRPC. Although several 
mechanisms have been suggested for the sustained AR 
signaling, tyrosine phosphorylation of AR protein by AhR-
activated-Src may have a significant role in CRPC that also 
exhibit constitutive AhR signaling (Figure 3).
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