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Epigenetic aberration at enhancer regions in gastric cancer
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ABSTRACT

Cancer arises through the accumulation of genetic and epigenetic 
alterations. Comprehensive analyses of human cancer epigenomes over 
the past decade have revealed that chromatin and epigenetic aberrations 
induced by genetic, metabolic, and environmental stimuli play important 
roles in tumor initiation as well as progression. Among these aberrations, 
DNA hypermethylation at promoter regions is one of the major mechanisms 
to silence tumor suppressor genes in cancer, and has been studied in detail. 
For gastric cancer, for example, we and other groups have conducted genome-
wide DNA methylation analyses, and classified gastric cancer into several 
DNA methylation epigenotypes. Gastric cancer with Epstein-Barr virus (EBV) 
infection exhibits the most extensive hypermethylation phenotype among all 
the human malignancies, and EBV infection itself is shown to cause aberrant 
DNA methylation induction. EBV infection also alters histone modifications, 
not only at promoter regions but also at enhancer regions. Epigenetic 
alteration at enhancers causes aberrant regulation of cancer-related genes 
together with epigenetic alteration at promoters, and it is known to contribute 
to tumorigenesis. We here review epigenetic aberration at enhancer regions 
in gastric cancer. 

Introduction
For gastric cancer, we and other groups have conducted 

integrative genomic and genome-wide DNA methylation analyses, 
and classified gastric cancer into several molecular subtypes1–4. 
Gastric cancer with Epstein-Barr virus (EBV) infection were 
characterized by frequent ARID1A mutation, a lack of TP53 mutation 
and relatively chromosome stable. In addition, it shows the highest 
degree of hypermethylation among all the human malignancies but 
had minimal demethylation3,4, and EBV infection itself is shown to 
cause aberrant DNA methylation induction2. We recently showed 
that EBV infection also alters histone modifications, not only at 
promoter regions but also at enhancer regions5,6 and enhancer 
alteration is known to contribute to tumorigenesis through aberrant 
expression of cancer related genes7.

Transcriptional regulation by enhancers
Enhancers are cis-acting DNA regulatory elements that increase the 

transcriptional output of target genes to regulate cell-type or tissue-
type specific genes during development and differentiation. Enhancer 
sequences contain short DNA motifs that transcription factors can 
bind to in a sequence-specific manner. These binding proteins exclude 
nucleosome, recruit epigenetic modifiers, and stabilize chromatin 
loops between their target regions by architectural proteins. 
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Nucleosomes in the vicinity of active enhancers 
typically contain specifically modified histones. Histone 
H3 lysine 4 mono-methylation (H3K4me1) is predominant 
at the enhancers8 but H3K4 tri-methylation (H3K4me3) 
is predominant at the promoters. H3K4 di-methylation 
(H3K4me2) is enriched around H3K4me3 modification 
but also observed at enhancers. The activity of promoters 
and enhancers is determined by modification at H3 lysine 
27 (H3K27). Whereas H3K27 is tri-methylated at inactive/
poised enhancers and promoters, H3K27 is acetylated at 
active enhancers and promoters9–11. In mammals, MLL3 and 
MLL4 constitute major H3K4 monomethyl-transferases 
and also function with Utx, a subunit of the complex, as 
an enhancer-specific H3K27 demethylase against tri-
methylated H3K27 (H3K27me3)12. Acetylated H3K27 
(H3K27ac) are regulated by histone acetyl transferases 
such as p300 and CBP. Enhancer-bound transcription 
factors interact with the basal transcription machinery 
on promoters, through the Mediator complex and 
transcription elongation complex including BRD4 (Figure 
1). The architectural proteins, e.g., CTCF and cohesin, 
and their loading factors such as NIPBL are involved in 
stabilizing these long-range interactions13–16.

Enhancer dysregulation in cancer
Recent studies have shown that single-nucleotide 

polymorphisms, insertions, or deletions induce aberrant 

activation or repression at enhancers and alter the gene 
expression17,18. Also, the MLL3 and MLL4 genes have been 
reported to be frequently mutated in many different forms 
of cancer, some of which include bladder cancer, breast 
cancer, liver cancer, gastric cancer, etc19–22. These suggested 
that enhancer regions are important to maintain the tissue-
specific expression and that the enhancer dysregulation 
leads to diseases including cancer.

Super-enhancers are large clusters of enhancers 
that define cell identity by upregulating neighboring 
genes. Super-enhancers associated with oncogenic 
driver genes are aberrantly activated in cancer cells 
through many different mechanisms23. The genetic 
mechanisms of super-enhancer acquisition in cancer 
include DNA translocation24–26, focal amplification23,27,28, 
and nucleation by small insertions/deletions that create 
master transcription factor binding sites29. Additional 
epigenomic mechanisms of super-enhancer formation 
in cancer are oncogenic overexpression of transcription 
factors23, oncogenic fusion of transcription factors such as 
EWS-FLI30, and the consequences of upstream oncogenic 
signaling such as RAS-dependent signaling to chromatin31 
(Figure 2).

In primary gastric adenocarcinoma, Ooi et al. 
identified somatic super-enhancers using clinical tissue 
samples, which mainly include genomically stable and 

Figure 1. A model for transcriptional activation by enhancer.
TF, transcription factor. Med, Mediator complex. Pol II, RNA polymerase II. Transcription factors often recruit chromatin-modifying 
coactivators, transcription elongation complex, and architectural proteins in interaction between enhancer and promoter. 
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chromosomally instable gastric cancer subtypes with 
lower DNA methylation, and not microsatellite instable 
and EBV(+) subtypes with higher DNA methylation32. They 
experimentally confirmed direct binding of transcription 
factors CDX2 and HNF4A at super-enhancers aberrantly 
identified in gastric cancer, and silencing of these 
transcription factors could repress the somatic super-
enhancers.

Enhancer dysfunction is also related to metastasis 
and patient mortality. Bell et al. performed an integrative 
analysis of DNA methylation, RNA-seq, and small RNA-
seq profiles in thousands of patients, including 25 diverse 
primary malignancies and seven body sites of metastatic 
melanoma33. They identified differentially methylated 
regions in enhancers (eDMR); eDMR enabled classification 
of primary tumors according to physiological organ 
systems, and correlated with patient outcome. Roe et al. 
reported that metastasis is promoted through enhancer 
reprogramming in pancreatic cancer34. They used an 
organoid culture system to investigate how transcription 
and the enhancer landscape are altered during discrete 
stages of disease progression in a mouse model of 
pancreatic ductal adenocarcinoma. They showed that the 
cancer cells become more invasive and less anchorage-
dependent for growth through FOXA1-dependent enhancer 
reprogramming in vitro, as well as more metastatic in vivo.

Enhancer dysregulation in EBV(+) gastric cancer
Recently, we provided evidence that EBV infection in 

gastric epithelial cells induces alteration of global histone 
modification, including active and repressive histone 
marks6. We showed that de novo DNA methylation at 

promoter regions is correlated with low level or decrease 
of active histone marks (H3K4me3 and H3K27ac)5. 
H3K27me3 loss at promoter regions were replaced by 
de novo DNA methylation and expression of associated 
genes were maintained repressed5,6. In addition, de novo 
DNA methylation was concomitantly observed at regions 
with increase of H3 lysine 9 tri-methylation (H3K9me3)6, 
in agreement with previous findings about association of 
H3K9me3 with DNA methylation35. 

On the other hands, loss of repressive marks 
(H3K27me3 or H3K9me3) and concomitant enhancer 
activation through an increase of H3K4me1 and H3K27ac 
dynamically occurred. Such enhancer activation might 
contribute to tumorigenesis by activating neighboring 
oncogenic genes6. We also showed that enhancer repression 
through deacetylation of H3K27ac and induction of 
DNA methylation might contribute to tumorigenesis by 
repressing neighboring tumor suppressor genes. We 
identified activated enhancers during EBV infection, 
with Runx1 and Ets1 motifs enriched at these regions. In 
addition, we showed that the GATA3 and GRHL1 motifs 
were enriched at repressed enhancers6. 

Host and viral factors that associated with epigenetic 
alteration may facilitate the initiation, maintenance, and 
evolution of EBV(+) gastric cancer. Ten-eleven-translocation 
(TET) proteins might function as resistant factors against 
de novo DNA methylation, to protect unmethylated status 
at promoter region36. Downregulation of TET2 by EBV 
transcripts such as BARF0 or LMP2A36, and upregulation 
of Dnmt1 in EBV(+) gastric cancer2 are potential causes 
of epigenetic repression by DNA methylation induction. 

Figure 2. Model of somatic super-enhancer activation in cancer. 
E, enhancer. TF, transcription factor. Dysregulated transcription factors and epigenetic modifiers, and somatic super-enhancers 
acquired through genomic structural variations, e.g. focal amplification of an enhancer element, activate driver oncogenes. 
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around its targeting sequence, and inhibit silencing of 
the gene44. Pyrrole-imidazole polyamides can also be 
conjugated with inhibitors against histone modification 
enzymes to alter histone status at selective genomic 
regions45. These techniques to modify epigenomic status at 
selective regions might be helpful for the development of a 
new epigenetic therapeutic strategy.
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