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ABSTRACT

In treating locally advanced non-small-cell lung cancer (NSCLC), radio-
tolerance of the normal lung often limits the amount of dose that can be 
delivered to the primary cancer site. Radiation-related pneumonitis (RP) and 
other normal lung tissue complications have a significant impact on clinical 
outcome and patient quality of life. How to minimize treatment side effects 
while achieving desirable local control of lung cancers has been a continuous 
challenge.

Functional imaging-guided radiotherapy, which can achieve a local 
boost of primary cancer site or functional avoidance of normal organs, has 
been increasingly utilized in clinics. Various imaging approaches have been 
employed to achieve functional imaging guidance and implemented in 
different treatment regimens. There are several on-going clinical trials aiming 
to evaluate the clinical outcomes that are utilizing functional imaging-guided 
photon radiation to spare the high functioning portions of the lungs. The main 
applications of functional imaging-guided radiotherapy in the management of 
NSCLC patients will be discussed in this review.

Introduction

Radiotherapy plays a major role in the treatment of patients 
with locally advanced non-small-cell lung cancer (NSCLC), primarily 
due to the extent of the disease not suitable for surgery. Despite 
advances in local and systemic therapies, local control and survival 
remain poor and there is a sense that a therapeutic plateau has 
been reached with conventional approaches. On the contrary, 
strategies for dose escalation have shown encouraging results with 
improved therapeutic ratio and survival as confirmed by Radiation 
Therapy Oncology Group (RTOG) 9311 and several other clinical 
trials1,2. However, the radio-tolerance of the normal lung is the 
primary limiting factor of the dose escalation to the primary cancer 
site.  Therefore, one proposal to minimize the radiation-induced 
lung injury is to take consideration of the pulmonary function 
by deliberately reducing dose to highly functional regions when 
generating the treatment plan. This concept of functional imaging-
guided lung avoidance treatment has been investigated with several 
imaging modalities, including single photon emission computed 
tomography (SPECT), hyperpolarized (HP) gas magnetic resonance 
imaging (MRI), and increasingly with 4-dimensional (4D) computed 
tomography (CT) based measures of lung function. Here we review 
the applications with different functional imaging modalities and 
different treatment modalities.
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Functional Lung Imaging Modalities
Lung function can be evaluated by functional imaging 

modalities such as SPECT3,4, HP Helium or Xenon MRI5,6 and 
4D CT ventilation imaging7-9. 

Perfusion SPECT has long time been the most commonly 
used imaging modality for functional lung assessment3,4. 
The ventilation map generated by SPECT can be further 
utilized to optimize beam directions for radiation treatment 
planning to potentially spare highly functional normal 
lung3,10. However, SPECT has limitations with low spatial 
and temporal resolution compared to anatomical imaging 
as CT or MRI. It also suffers from the potential errors in 
photon attenuation and scatters correction, imaging 
registration to CT for planning, and patient repositioning 
or setup inconsistency11. Recently HP gas MRI has been 
developed rapidly, including helium-35 with stronger 
signals due to higher levels of polarization and higher 
gyromagnetic ratio, and xenon-1296, with an unlimited 
supply in nature and its falling cost, providing a unique tool 
for direct assessment of lung ventilation12. But in general, 
functional MRI is not yet widely available in clinics, and the 
routine application in clinical practice would be associated 
with long scanning time and high cost to patients13. 

CT especially 4D-CT, on the contrary, is gaining its 
popularity to assess the pulmonary function due to the 
wide accessibility, routine clinical application, and low 
cost. Previous literature has detailed the methodology 
of deriving pulmonary ventilation maps from 4D-CT7,9. 
Typically, a deformable image registration (DIR) is involved 
to obtain a displacement vector field (DVF) from peak-
exhale to peak-inhale phases from the 4D series. With the 
assumptions that regional ventilation is proportional to 
the regional volume change, either Hounsfield unit (HU) 
change14-16 or Jacobian measurement7,17,18 of the DVF can 
be used to derive ventilation map. Currently, various DIR 
algorithms have been developed and tested, of which 
the transformation model ranges in complexity from a 
simple extension of a global affine transformation to a 
completely local or free-form model where each voxel in 
the image can move independently. Also, there are two 
classes of similarity metrics commonly used to regulate 
DIR performance: geometry-based or intensity-based. As 
4D-CT pulmonary ventilation images can vary widely with 
DIR algorithms and metrics, careful validation is needed 
before the clinical use. Cui et al. have evaluated 7 different 
DIR algorithms in generating 4D-CT based lung ventilation 
maps and compared the results with what is captured by 
HP gas tagging MRI on three healthy patients19. A large 
number (300-500) of uniformly distributed landmarks 
were identified to enable a complete assessment of DIR 
throughout the entire lung. The 7 DIR method platforms 
included Velocity, MIM, Mirada, Elastix and 3 other in-
house built algorithms from DIRART toolbox such as 

Double Force Demons, Improved Lucas-Kanade, and 
Iterative Optical Flow. Among all algorithms, the Jacobian 
derivation of the deformable vector fields (DVFs) generated 
from Velocity (multi-pass free-form deformation) gave the 
most reasonable result. Brennen et al. performed clinical 
validation by comparing using HU-based and Jacobian-
based 4D-CT ventilation metrics with pulmonary function 
test data on ninety-eight lung cancer patients20. They 
confirmed HU-based ventilation metrics produced better 
correlations when compared to Jacobian-based ventilation 
metrics. There are also several studies attempting to 
validate 4DCT-ventilation by comparing it against other 
ventilation imaging modalities such as nuclear medicine 
ventilation-perfusion imaging21, xenon-CT4,17, PET22, and 
MRI23,24 or directly with pulmonary function testing20. The 
studies generally found good agreement on a global level, 
yet the regional physiologic accuracy has not been validated 
in patients. In addition, temporal changes in regional 
ventilation to a segment of lung previously impaired by 
compression from a local tumor might occur during the 
course of radiation treatment.  A possible explanation 
of these changes is that the shrinkage of lung tumor in 
response to radiation might increase the ventilation due 
to the reopening of the airways25. Nevertheless, additional 
work is needed to validate the regional physiologic accuracy 
of 4DCT derived ventilation imaging in real patients 
especially during the course of radiation treatment.

Implementations with Photon Radiotherapy
The feasibility of photon treatment planning using 

an optimal beam arrangement aiming at preserving the 
high functioning portion of the lung under the guidance 
of functional imaging has been widely studied. Studies 
have demonstrated decreasing the radiation dose to high-
functioning lung areas and directing the radiation to the 
parts with inactive perfusion/ventilation may help to 
protect highly functioning lung regions and thus reduce 
the incidence and seriousness of radiation pneumonitis 
(RP)7,8,26-30. Those treatment plans did not compromise 
the DVHs of OARs, such as the spinal cord, esophagus, and 
heart, which may be additional important clinical factors. 
These results also demonstrated that functional imaging 
could be applied safely to photon radiation treatments for 
patients with NSCLC, without exceeding the dose-volume 
tolerances of OARs.

In addition, Ireland et al. showed that patients with 
specific types of functional defects, tumor volumes and 
positions will benefit from the inclusion of functional data 
for normal lung dose reduction31. Lavrenkov et al. compared  
IMRT planning and 3D-CRT planning using functional 
SPECT perfusion images and demonstrated that IMRT 
planning led to a lower high functioning lung mean dose 
than 3D-CRT planning32. Yamamoto et al. demonstrated 
that 4D-CT ventilation imaging based functional IMRT and 
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VMAT treatment planning, by changing only one variable 
(i.e., absence/presence of constraints on the functioning 
lung), led to significant reductions in the high functioning 
lung dose27. Faught et al. discussed which dose-function 
metrics should be used for treatment planning and aimed 
to construct most predictive models to predict RP33.

There are several on-going clinical trials, such as NCI 
NCT02308709, NCT02528942, and NCT02843568, that 
utilize functional imaging-guided photon radiation to spare 
higher functioning portions of the lung and aim to evaluate 
the clinical outcome. With this technique of functional lung 
sparing, the goal is to reduce the rates of lung parenchymal 
toxicity, i.e. pneumonitis, and to further allow for dose 
escalation.

Implementations with Proton Radiotherapy
To date, most of the work utilizing functional imaging 

was done with photon-based radiotherapy and limited 
work was reported with proton treatment. The energy 
deposition of protons has theoretical advantages because 
of the physical property of proton particles, which can be 
exploited to reduce exposure of normal tissues to radiation, 
particularly to reduce low dose radiation exposure to 
OARs. Under this premise, emerging dosimetric and 
clinical studies are being undertaken to assess the role of 
proton radiotherapy vs. photon and the potential to further 
escalate dose with proton treatment34-38. 

Our group, is the first to demonstrate the feasibility 
of incorporating 4DCT-based ventilation map into proton 
planning with both double scattering (DSPT) and pencil 
scanning (IMPT) techniques39. The results showed that 
both DSPT and IMPT plans gave a superior dosimetric 
advantage over photon IMRTs in sparing low dose regions 
of the total lungs in terms of V5 (volume receiving ≥ 5Gy). 
The functional planning in IMPT delivery can further 
reduce the low dose in high functioning lung without 
degrading the PTV dosimetric coverage or increasing 
dose to critical structures. Yet, the functional DSPT only 
showed marginal benefit in sparing high-functioning lung 
in terms of V5 or V20 (volume receiving ≥ 20Gy) compared 
to anatomical plans. Recently, O’Reilly et al. conducted a 
case-control study on 48 NSCLC patients to compare the 
high-ventilation lung dose with RP outcome40. Their data 
supported findings that dose to the high-ventilated lung 
may serve as a predictor of RP regardless treated with 
photons or protons.

To our best knowledge, functional imaging-guided 
proton treatment with normal lung avoidance is still 
very new and no clinical trial has been conducted so far. 
With the rapid growth of proton centers and advances in 
imaging techniques, there will be more interests in applying 
functional imaging in proton planning. However, for lung 
proton treatment especially pencil beam delivering, several 

practical issues remain. For the IMPT technique, one of the 
major concerns comes from the interplay effects between 
the moving beams and moving tissue. The magnitude of 
the interplay effect with scanning proton beams has been 
reported in previous studies, and it has been shown that 
proton dose could be impacted enormously by the interplay 
effect for tumor motions around or larger than 10 mm41-

45. Kardar et al. introduced a 4D dynamic dose simulator
and further investigated the impact of motion pattern and
starting phases on the interplay effects46,47. They observed
situations in which motion more than 5 mm and small
tumor sizes led to relatively large uncertainties caused by
the interplay effect in a single fraction. In contrast, for some
patients with motion less than 5mm and large tumor size,
the interplay effect was small. Moreover, a recent study
by Inoue et al. evaluated the impact of setup and range
uncertainties, breathing motion, and interplay effects in
IMPT dose distributions48. Their results demonstrated that
in robust-optimized plans the dosimetric effects due to
geometric and radiologic variation had a limited impact on
target coverage, target dose homogeneity, and OAR dose
parameters when treated with multi-fractionation clinical
scheme. As such for future functional imaging-guided IMPT
delivery, it is very critical to identify a proper patient cohort.
It might be appropriate to include only patients with non-
small size tumor and also with breathing motion less than
5-7 mm. In addition, as suggested by Kardar et al. and Li et
al.46,47, a target coverage difference between the maximum
in-hale (CT0) and maximum ex-hale (CT50) needs to be
assessed and a less than 5% difference may suggest a robust
coverage. Nevertheless, further studies are needed to ensure
the robustness of the proton treatment for moving target.

Conclusion
This review highlights the inclusion of normal lung 

functional data into treatment planning using photon 
or proton radiation for lung cancer. It is feasible to use 
functional imaging techniques to obtain the perfusion/
ventilation imaging to assess the normal lung function 
and then optimize the treatment planning by limiting 
dose to the functional lung regions. The benefit is to 
minimize the risk of radiation-induced lung injury, 
which may potentially allow dose escalation and thereby 
improve overall survival. Several clinical trials with photon 
treatment are on-going and similar studies are expected to 
extend to proton treatment. However, beyond the question 
regarding which imaging or treatment modality should be 
used for functional imaging-guided radiation treatment, 
the clinical implication underlying the modification of the 
dose for functional lung should be investigated. The clinical 
assumption for dose-redistribution to avoid high-functional 
lung is that a higher dose can be targeted to low perfused/
ventilated lung. Lung function can be reduced irreversibly 
by radiation, but tumor itself can be responsible for reduced 
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lung function. Therefore, a potential limitation of normal 
lung avoidance is that lung volumes that may have received 
a functionally modified, amplified dose may regain some 
degree of function after treatment. Hence, whether defects 
are permanent or reversible becomes an important issue 
when assigning functional and non-functional planning 
constraints. Further validation tests, planning studies and 
clinical trials will be required to increase our understanding 
of the potential benefits and long-term effects of functional 
imaging-guided lung avoidance planning strategies.
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