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The anti-apoptotic protein MCL1, a novel target of lung cancer therapy
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ABSTRACT

Evasion of apoptosis is one of the typical hallmarks of cancer and a 
major mechanism for cancer development, tumor growth, and acquisition of 
resistance to chemotherapy. The anti-apoptotic Bcl-2 protein family, particularly 
MCL1 and BCL-XL, play an important role in acquisition of apoptosis evasion. 
MCL1 is a highly unstable protein that is constantly degraded by the ubiquitin-
proteasome system.  An increase in MCL1 protein has been reported in many 
cancers, including lung cancer, through high mRNA expression or impairment 
of its degradation systems. To date, much evidence has shown that MCL1 is 
important for cancer cell survival and drug resistance in lung cancers. In this 
review, we discuss the role and mechanism of high MCL1 expression in lung 
cancer.

MCL1 was originally identified as an up-regulated gene in a 
human myeloid leukemia cell line, and its amino acid sequence 
has similarity to the anti-apoptotic protein BCL21. BCL-2 family 
proteins are critical regulators of mitochondrial apoptosis, a major 
regulatory pathway of mammalian apoptosis and a typical target to 
induce cell death by anti-cancer drugs2. The BCL-2 protein family 
has conserved BCL-2 homology (BH) domains and are classified as 
pro- or anti-apoptotic proteins. The pro-apoptotic “multi-domain” 
members that contain several conserved BH domains, BAX and 
BAK, function as apoptosis executors in mitochondria, while the 
anti-apoptotic “multi-domain” members, such as BCL-2, BCL-XL, 
and MCL1, inhibit BAX/BAK-mediated apoptosis. Among the BCL-2 
homology domains, the BH3 domain directly associates with anti-
apoptotic BCL-2 members, and BH3-only members of the BCL-2 
protein family trigger mitochondrial apoptosis by activation of 
BAX/BAK and inhibition of the anti-apoptotic BCL-2 members in 
the response to numerous stimuli such as developmental signals, 
stress signals, the DNA damage response, and various anticancer 
drugs3 (Figure 1). Because anti-apoptotic BCL-2 family proteins 
secure survival of many cancer cells, it is possible that suppression 
of their anti-apoptotic functions induce apoptosis of cancer cells. In 
this context, inhibitors of anti-apoptotic BCL-2 members have been 
extensively explored, and several candidate compounds are now 
being analyzed for their efficacy against various cancers including 
lung cancer3-5 (see below).

Lung cancer is the leading cause of cancer mortality worldwide, 
and accumulating evidence has suggested that high expression of 
anti-apoptotic MCL1 protein by various mechanisms is important 
for oncogenesis, tumor development, and chemotherapeutic drug 
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resistance of lung cancer cells. Indeed, in a mouse lung 
adenocarcinoma model, in which the oncogenic transcription 
factor Myc was targeted to pulmonary alveolar cells, it has 
been shown that MCL1 overexpression augments tumor 
progression by circumventing Myc-induced apoptosis6. 
This mini-review introduces the role and mechanism of 
MCL1 overexpression in lung cancer cells and discusses the 
possibility of treatments targeting MCL1.

Gene amplification and transcriptional activation of 
MCL1

High resolution analyses of somatic copy number 
alterations revealed gene amplification of BCLX and MCL1 
in a substantial proportion of human cancers, especially 
lung and breast cancers7. Moreover, growth of MCL1 gene-
amplified lung cancer cell lines is affected by inhibition 
of MCL1 expression using RNA interference7,8, suggesting 
a crucial role of MCL1 in lung cancer. This notion is also 
supported by results showing that copy number variation 
of MCL1 predicts overall survival of patients with non-
small cell lung cancer (NSCLC)9.

MCL1 gene transcription is upregulated by cytokines, 
such as interleukin (IL)-3, IL-6, granulocyte-macrophage 

colony-stimulating factor, and growth factors such as 
epidermal growth factor and vascular endothelial growth 
factor10,11. Moreover, the MCL-1 promoter has been shown 
to be activated by the transcription factors STAT3, NF-κB, 
CREBP, PU.1, SP-1, ELK-1, ATF-6, and HIF-111. In lung cancer, 
activation of STAT3 and NF-κB are frequently observed and 
their roles have been analyzed experimentally12-16. Moreover, 
STAT3 and ELK-1 are activated by EGFR (epidermal growth 
factor receptor)13,14. In addition, a recent report has shown 
that expression of a microRNA, which directly suppresses 
MCL1 mRNA, is suppressed in lung cancer17, suggesting 
that MCL1 mRNA expression is activated by transcriptional 
and post-transcriptional regulation in lung cancer.

The MCL1 protein stabilization by inhibition of 
ubiquitin ligases

Accumulating evidence has shown that expression 
of MCL1 protein is tightly regulated by the ubiquitin-
proteasome system10,18. In the course of these experiments, 
several ubiquitin ligases were identified. MULE (Mcl-1 
ubiquitin ligase E3) is a HECT domain ubiquitin ligase 
and contains the BH3 domain that allows MULE to 
specifically interact with MCL119. Although it has been 
shown that inhibition of MULE expression induces 
hepatocarcinogenesis through stabilization of MCL120, it has 
not been reported whether it is involved in the onset of lung 
cancer. In addition, β-TrCP (β-transducin repeat-containing 
protein) degrades MCL1 via its phosphorylation at serine 
155, serine 159, and threonine 163 by GSK-3β (glycogen 
synthase kinase-3β)21. β-TrCP is an F-box protein and 
functions as a substrate recognition component of the SCF 
(SKP1-cullin 1-F-box protein) family of ubiquitin ligases22. 
The inactive phosphorylation of GSK-3β at serine 9 and 
EGFR expression are both negatively linked to survival of 
lung cancer patients23. However, the relationship between 
lung cancer and GSK3 is currently under investigation24. 

The F-box protein FBW7 is a well characterized tumor 
suppressor acting as an ubiquitin ligase that targets MCL1 
and well characterized as a tumor suppressor gene25-27. The 
FBXW7 gene, which encodes FBW7, is frequently mutated 
in diverse cancer types including leukemia and breast, 
colon, liver, ovarian, and lung cancers26-28. FBW7 expression 
is transcriptionally regulated by the tumor suppressor 
p5329, and loss-of-function of p53 reduces the expression 
of FBW730. Therefore, the tumor-suppressive function of 
FBW7 may be considered only in the context of p53. Since, 
FBW7 degrades several proto-oncogenes that function in 
cell growth, such as c-MYC, cyclin E, Notch, and c-JUN26,28, 
its tumor-suppressing function of FBW7 is not only limited 
to MCL1 degradation. In addition to these mechanisms, 
we recently found that chaperone-mediated autophagy31, 
a specific protein degradation system, promotes survival 
of several lung cancer cell lines through the selective 
stabilization of MCL1 by degradation of the ubiquitin ligase 

Figure 1. Mitochondrial apoptotic pathway. In response to 
cytotoxic stimuli, pro-apoptotic BH3-only proteins, such as BIM, 
BID, NOXA, and PUMA, inactivate anti-apoptotic multi-domain 
members, such as MCL1, BCL-XL, and BCL-2, through direct 
interaction with their BH3 domain. Inactivation of anti-apoptotic 
members changes the inactive form of BAX/BAK to the active 
form, resulting in oligomerization of BAX/BAK in the mitochondrial 
outer membrane. Oligomerized BAX/BAK form a pore to release 
mitochondrial protein cytochrome c into the cytoplasm. Released 
cytochrome c activates the Apaf-1 apoptosome, and subsequent 
activation of caspases results in induction of apoptosis2,3.
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that targets MCL132. Despite these findings, much is still 
unknown about the regulation of MCL1 protein stability in 
healthy and malignant cells.

MCL1 protein stabilization by overexpression of 
deubiquitinase

The deubiquitinase USP9X binds to MCL1 and removes 
polyubiquitin chains that mark MCL1 for proteasomal 
degradation33. Moreover, increased USP9X expression 
correlates with increased MCL1 protein in human cancers, 
and knockdown of USP9X enhances MCL1 turnover, 
suggesting that USP9X stabilizes MCL1 and promotes 
cancer cell survival. In lung cancer, it has been reported that 
USP9X expression in NSCLC tissue is significantly higher 
than in normal lung tissue, and that an elevated expression 
level of USP9X is associated with a poor prognosis34. A global 
map of p53 transcription factor-binding sites revealed that 
USP9X might be a p53 target gene35.   Induction of USP9X 
by radiation renders cancer cells more therapy resistant 
as high MCL1 protein levels prevent apoptosis36. These 
findings suggest that USP9X performs its oncogenic activity 
through stabilization of MCL1.

The role of MCL1 and its targeted therapy in lung 
cancer

During the process of oncogenic transformation, cells 
show higher expression of pro-apoptotic proteins resulting 
from cell cycle checkpoint activation, DNA replication 
stress, and/or many other stresses37. However, cancer 
cells survive by adapting to the effects of increasing levels 
of MCL1 and other anti-apoptotic BCL-2 family proteins. 
Although some lung cancer cells do not depend on MCL1 
for survival38, the expression of MCL1 is elevated in most 
lung cancer cells by various mechanisms (Figure 2). Many 
reports have shown that suppression of MCL1 increases 
the sensitivity of lung cancer cells to anticancer drugs10,18,27. 
Considering these facts, BH3 mimetics that are selective 
inhibitors of MCL1 and other anti-apoptotic BCL-2 proteins 
may be potential therapeutic agents for lung cancer.

BH3 mimetics are small compounds that antagonize 
anti-apoptotic BCL-2 family proteins, leading to apoptosis 
induction in cancer cells3,4,39. Similar to the BH3 domain in 
BH3-only proteins, BH3 mimetics specifically interact with 
anti-apoptotic BCL-2 family proteins and disrupt their 

Figure 2. Schematic representation of the mechanism of high MCL1 expression in cancer cells. In cancer cells, MCL1 protein is highly 
expressed, mainly by three mechanisms: gene amplification, enhanced gene expression by transcription factors involved in cell proliferation, 
and protein stabilization by decreased expression of the ubiquitin-ligase complex or high expression of deubiquitinating enzymes. See main 
text for details. 
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ability to interact with pro-apoptotic BCL-2 proteins to 
induce BAX/BAK-dependent apoptosis2,39. Among such 
compounds, ABT-263 (navitoclax), a dual inhibitor of BCL-
XL and BCL-2, has been shown to be significantly effective 
in most chronic lymphocytic leukemia (CLL) patients in 
clinical trials, and ABT-199 (venetoclax), a selective BCL-
2 inhibitor, is also effective in patients with relapsed or 
refractory CLL2,40. The three-dimensional structures of 
anti-apoptotic BCL-2 proteins, such as BCL-2 and BCL-
XL, share a common motif consisting of four amphipathic 
helices that form a hydrophobic groove serving as the 
binding site for pro-apoptotic BH3 domains. High- affinity 
binding of BH3 peptides to both BCL-2 and BCL-XL is 
mediated primarily by interactions in two hydrophobic 
pockets, termed P2 and P4, and navitoclax specifically 
binds to these P2 and P4 pockets39. The efficacy of 
ABT-263 and its related compound, ABT-737, has been 
demonstrated in lung cancer8,41-46. Because of the key 
role of MCL1 in protecting malignant cells against anti-
cancer treatments, combinatorial therapy with BH3-
binding molecules such as navitoclax may enhance the 
therapeutic effects of radiotherapy and other treatments. 
Multiple approaches have been undertaken to directly 
target MCL1, and several MCL1-specific BH3 mimetics 
have been identified39,47. For example, S63845 binds with 
high affinity to human MCL1 without appreciable binding 
to BCL-2 or BCL-XL

47. Analyses of these compounds and 
further molecular development are expected to lead to 
effective treatments for lung cancer.
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